Арифметика

Учебное пособие к этой главе

 Целые (натуральные) числа

Натуральные числа возникли в глубокой древности как результат счета различных предметов: людей, животных, птиц, деревьев, орудий труда и т.д. Ряд натуральных чисел:      

1, 2, 3, 4, 5, …

является бесконечным и называется натуральным рядом.

Целые числа – это натуральные числа и ноль:

0, 1, 2, 3, 4, 5, … .
   

 Арифметические операции

Сложение является начальным понятием, для которого невозможно дать строгое формальное определение. Тем не менее, чтобы придать этому действию некоторое разумное представление, мы скажем, что сложение – это операция нахождения суммы двух или нескольких чисел, где под суммой понимается общее количество единиц, содержащихся в рассматриваемых числах вместе. Эти числа называются слагаемыми. Например, 11 + 6 = 17. Здесь 11 и 6 – слагаемые, 17 – сумма. Если слагаемые поменять местами, то сумма не изменится: 11 + 6 = 17 и 6 + 11 = 17.

Вычитание является действием, обратным к сложению, так как это операция нахождения одного из слагаемых по сумме и другому слагаемому. Вычесть из одного числа (уменьшаемого) другое (вычитаемое) - значит найти такое третье число (разность), которое при сложении с вычитаемым дает уменьшаемое: 17 – 6 = 11. Здесь 17 – уменьшаемое, 6 – вычитаемое, 11 – разность.

Умножение. Умножить одно число n (множимое) на другое целое число m (множитель) - значит повторить множимое n в качестве слагаемого m раз. Результат умножения называется произведением. Запись операции умножения: n x m или n ∙ m . Например, 12 x 4 = 12 + 12 + 12 + 12 = 48. Таким образом, 12 x 4 = 48 или 12 ∙ 4 = 48. Здесь 12 – множимое, 4 – множитель, 48 – произведение. Если множимое n и множитель m поменять местами, то произведение не изменится. Например, 12 · 4 = 12 + 12 + 12 + 12 = 48 и соответственно, 4 · 12 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 48. Поэтому множимое и множитель часто называются сомножителями.

Деление является действием, обратным к умножению, так как это операция нахождения одного из сомножителей по произведению и другому сомножителю: Разделить одно число (делимое) на другое (делитель) – значит найти такое третье число (частное), которое при умножении на делитель даёт делимое: 48 : 4 = 12. Здесь 48 – делимое, 4 – делитель, 12 – частное. Частное от деления одного целого числа на другое целое число может и не быть целым числом. Тогда это частное представляется в виде дроби. Если частное – целое число, то говорят, что эти числа делятся нацело. В противном случае мы выполняем деление с остатком. Пример: 23 не делится на 4, в этом случае мы можем записать: 23 = 5 · 4 + 3. Здесь 3 – остаток.

Возведение в степень. Возвести число (основание степени) в целую степень (показатель степени) – значит повторить его сомножителем столько раз, каков показатель степени. Результат называется степенью. Запись возведения в степень:

3 5 = 3 · 3 · 3 · 3 · 3 = 243 .


Здесь 3 – основание степени, 5 – показатель степени, 243 – степень.

Вторая степень любого числа называется квадратом, третья – кубом. Первой степенью любого числа является само это число.

Извлечение корня является действием, обратным к возведению в степень, так как это операция нахождения основания степени по степени и её показателю. Извлечь корень n-ой степени (n – показатель корня) из числа a (подкоренное число) – значит найти третье число, n-ая степень которого равна а . Результат называется корнем. Например:

5√243 = 3


Здесь 243 – подкоренное число, 5 – показатель корня, 3 – корень. Корень второй степени называется квадратным, корень третьей степени – кубическим. Показатель квадратного корня не записывается:

√16 = 4


Сложение и вычитание, умножение и деление, возведение в степень и извлечение корня являются попарно взаимно-обратными операциями.

 Порядок действий. Скобки.

Результат выполнения нескольких операций зависит, вообще говоря, от порядка действий. Например, 8 – 3 + 4 = 9. Однако, если сначала сложить 3 и 4, а затем вычесть полученную сумму из 8, то получим 1. Таким образом, для получения правильного результата должен быть установлен определённый порядок действий. Чтобы указать, в каком порядке должны выполняться действия, пользуются скобками. Если скобки отсутствуют, действия выполняются в следующем порядке:

1) возведение в степень и извлечение корня (в порядке их следования);

2) умножение и деление (в порядке их следования);

3) сложение и вычитание (в порядке их следования).

При наличии скобок сначала выполняются действия в скобках в указанном выше порядке, а затем все остальные действия вне скобок опять же с соблюдением указанного выше порядка.

П р и м е р . Вычислить выражение:

( 10 + 23 · 3 ) + 43 – ( 16 : 2 – 1 ) · 5 – 150 : 52.


Р е ш е н и е . Сначала выполняем действия в скобках в следующем порядке:

1) вычисляем степень:

( 10 + 8 · 3 ) + 43 – ( 16 : 2 – 1 ) · 5 – 150 : 25 ;


2) после этого выполняем умножение и деление в скобках:

( 10 + 24 ) + 43 – ( 8 – 1 ) · 5 – 150 : 25 ;


3) теперь выполняем сложение и вычитание в скобках:

34 + 43 – 7 · 5 – 150 : 25 ;


4) вычисляем степень вне скобок: 43 = 64 ;

5) наконец, после оставшихся умножения 7 · 5 = 35 и деления 150 : 25 = 6 получаем:

34 + 64 - 35 – 6 = 57.

 Законы сложения и умножения

Переместительный (коммутативный) закон сложения: m + n = n + m . Сумма не меняется от перестановки её слагаемых.

Переместительный (коммутативный) закон умножения: m · n = n · m . Произведение не меняется от перестановки его сомножителей.

Сочетательный (ассоциативный) закон сложения: ( m + n ) + k = m + ( n + k ) = m + n + k . Сумма не зависит от группировки её слагаемых.

Сочетательный (ассоциативный) закон умножения: ( m · n ) · k = m · ( n · k ) = m · n · k . Произведение не зависит от группировки его сомножителей.

Распределительный (дистрибутивный) закон умножения относительно сложения: ( m + n ) · k = m · k + n · k . Этот закон фактически расширяет правила действий со скобками.

 Признаки делимости

Признак делимости на 2. Число делится на 2, если его последняя цифра - ноль или делится на 2. Числа, делящиеся на два, называются чётными, не делящиеся на два – нечётными.

Признак делимости на 4. Число делится на 4, если две его последние цифры - нули или образуют число, которое делится на 4.

Признак делимости на 8. Число делится на 8, если три его последние цифры - нули или образуют число, которое делится на 8.

Признаки делимости на 3 и 9. Число делится на 3, если его сумма цифр делится на 3. Число делится на 9, если его сумма цифр делится на 9.

Признак делимости на 6. Число делится на 6, если оно делится на 2 и на 3.

Признак делимости на 5. Число делится на 5, если его последняя цифра - ноль или 5.

Признак делимости на 25. Число делится на 25, если две его последние цифры - нули или образуют число, которое делится на 25.

Признак делимости на 10. Число делится на 10, если его последняя цифра - ноль.

Признак делимости на 100. Число делится на 100, если две его последние цифры – нули.

Признак делимости на 1000. Число делится на 1000, если три его последние цифры – нули.

Признак делимости на 11. На 11 делятся только те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, делящееся на 11.

Существуют признаки делимости и для некоторых других чисел, однако они более сложные и в программе средней школы не рассматриваются.

П р и м е р .

Число 378015 делится на 3, так как сумма его цифр равна:

3 + 7 + 8 + 0 + 1 + 5 = 24, а это число делится на 3. Данное

число делится на 5, так как его последняя цифра 5. Наконец,

это число делится на 11, так как суммы его нечётных цифр:

3 + 8 + 1 = 12 и чётных цифр 7 + 0 + 5 = 12 равны.

Но это число не делится на 2, 4, 6, 8, 9, 10, 25, 100 и 1000, так как …

А вот эти случаи вы проверите самостоятельно!

 Простые и составные числа

Все целые числа (кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами. Числа, имеющие другие делители, называются составными (или сложными) числами. Простых чисел – бесконечное множество. Ниже приведены простые числа, не превосходящие 200:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

 Разложение на простые множители

Всякое составное число может быть единственным образом представлено в виде произведения простых множителей. Например,

48 = 2 · 2 · 2 · 2 · 3, 225 = 3 · 3 · 5 · 5, 1050 = 2 · 3 · 5 · 5 · 7 .

Для небольших чисел это разложение легко делается на основе таблицы умножения. Для больших чисел рекомендуем пользоваться следующим способом, который рассмотрим на конкретном примере. Разложим на простые множители число 1463. Для этого воспользуемся таблицей простых чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Перебираем числа по этой таблице и останавливаемся на том числе, которое является делителем данного числа. В нашем примере это 7. Делим 1463 на 7 и получаем 209. Теперь повторяем процесс перебора простых чисел для 209 и останавливаемся на числе 11, которое является его делителем. Делим 209 на 11 и получаем 19, которое в соответствии с этой же таблицей является простым числом. Таким образом, имеем: 1463 = 7 ∙ 11 ∙ 19, т.е. простыми делителями числа 1463 являются 7, 11 и 19.

 Наибольший общий делитель

Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД).

Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо:

1) представить каждое число как произведение его простых множителей, например:

360 = 2 · 2 · 2 · 3 · 3 · 5,


2) записать степени всех простых множителей:

360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51,


3) выписать все общие делители (множители) этих чисел;

4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;

5) перемножить эти степени.

П р и м е р . Найти НОД чисел: 168, 180 и 3024.

Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71,

180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71.

Выпишем наименьшие степени общих делителей 2 и 3 и перемножим их:

НОД = 22 · 31 = 12.

 Наименьшее общее кратное

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК).

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо:

1) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

5) перемножить эти степени.

П р и м е р . Найти НОК чисел: 168, 180 и 3024.

Р е ш е н и е .

168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71,


180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51,


3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71.


Выписываем наибольшие степени всех простых делителей и перемножаем их:

НОК = 24 · 33 · 51 · 71 = 15120 .

 Обыкновенные (простые) дроби

Часть единицы или несколько её частей называются обыкновенной или простой дробью. Количество равных частей, на которые делится единица, называется знаменателем, а количество взятых частей – числителем. Дробь записывается в виде:          

3
7
или 3/7

Здесь 3 – числитель, 7 – знаменатель.

Если числитель меньше знаменателя, то дробь меньше 1 и называется правильной дробью. Если числитель равен знаменателю, то дробь равна 1. Если числитель больше знаменателя, то дробь больше 1. В обоих последних случаях дробь называется неправильной. Если числитель делится на знаменатель, то эта дробь равна частному от деления: 63 / 7 = 9. Если деление выполняется с остатком, то эта неправильная дробь может быть представлена смешанным числом:

65
7
= 9
2
7


Здесь 9 – неполное частное (целая часть смешанного числа), 2 – остаток (числитель дробной части), 7 – знаменатель.

Часто бывает необходимо решать обратную задачу – обратить смешанное число в дробь. Для этого умножаем целую часть смешанного числа на знаменатель и прибавляем числитель дробной части. Это будет числитель обыкновенной дроби, а знаменатель остаётся прежним.

П р и м е р: Обратить 8
5
9
в обыкновенную дробь.

Р е ш е н и е:

1) 8 · 9 = 72

2)72 + 5 = 77

3)
77
9




Таким образом: 8
5
9
=
77
9


Обратные дроби – это две дроби, произведение которых равно 1. Например, 3 / 7 и 7 / 3 ; 15 / 1 и 1 / 15 и т.д.